A new study presents a promising treatment method for so-called fusion-driven cancers, which are currently often difficult to cure. These fusion-driven cancers are caused by an error in cell division that creates a fusion of different genes. This fusion causes the cancer and drives the uncontrolled cell growth.
Using the so-called molecular scissors CRISPR/Cas9, researchers from Aarhus University have developed a gene therapy that can stop cell division in a subtype of the aggressive blood cancer acute myeloid leukemia (AML).
The study has just been published in the scientific journal Leukemia. Even though the study focuses on blood cancer, many other types of cancer are also driven by fusion genes, for example some lung cancers and sarcomas. The researchers hypothesize that this technology can become a platform technology for specific types of cancer driven by fusion genes.
A paradigm shift in cancer therapy
So far, this gene therapy has been carried out in the laboratory on cell lines and mice. But the results are an important step towards developing a new form of treatment based on targeting the drivers of the disease, explains Associate Professor Maja Ludvigsen from the Department of Clinical Medicine at Aarhus University, who is one of the authors behind the study.
In brief, the researchers have succeeded in cutting genes that, in fusion cancers, are fused incorrectly together and which send