Patch-clamp studies and cell viability assays suggest a distinct site for viroporin inhibitors on the E protein of SARS-CoV-2

image
  • Liu J, Xie W, Wang Y, Xiong Y, Chen S, Han J, Wu Q. A comparative overview of COVID-19, MERS and SARS: review article. Int J Surg. 2020;81:1–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farag NS, Breitinger U, Breitinger HG, El Azizi MA. Viroporins and inflammasomes: a key to understand virus-induced inflammation. Int J Biochem Cell Biol. 2020;122:105738.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, Atif SM, Hariprasad G, Hasan GM, Hassan MI. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165878.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freeman TL, Swartz TH. Targeting the NLRP3 inflammasome in severe COVID-19. Front Immunol. 2020;11:1518.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alhetheel A, Albarrag A, Shakoor Z, Alswat K, Abdo A, Al-Hamoudi W. Assessment of pro-inflammatory cytokines in sera of patients with hepatitis C virus infection before and after anti-viral therapy. J Infect Dev Ctries. 2016;10:1093–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farag NS, Breitinger U, El-Azizi M, Breitinger HG. The p7 viroporin of the hepatitis C virus contributes to liver inflammation by stimulating production of Interleukin-1β. Biochim Biophys Acta Mol Basis Dis. 2017;1863:712–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan X, Yang W, Sun X, Wang L, Ma B, Li H, Zhou J. Association of influenza virus infection and inflammatory cytokines with acute myocardial infarction. Inflamm Res. 2012;61:591–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan WH, Hashmi Z, Goel A, Ahmad R, Gupta K, Khan N, Alam I, Ahmed F, Ansari MA. COVID-19 pandemic and vaccines update on challenges and resolutions. Front Cell Infect Microbiol. 2021;11:690621.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breitinger U, Farag NS, Sticht H, Breitinger HG. Viroporins: structure, function, and their role in the life cycle of SARS-CoV-2. Int J Biochem Cell Biol. 2022;145:106185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kien F, Ma H, Gaisenband S, Nal B. Viroporins: Differential Functions at Late stages of Viral Life Cycles. In Microbial Pathogenesis: Infection and Immunity. Edited by Kishore U, Nayak A: Landes Bioscience and Springer Science + Business Media; 2013: pp 38–62

  • Nieva JL, Madan V, Carrasco L. Viroporins: structure and biological functions. Nat Rev Microbiol. 2012;10:563–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castano-Rodriguez C, Honrubia JM, Gutierrez-Alvarez J, DeDiego ML, Nieto-Torres JL, Jimenez-Guardeno JM, Regla-Nava JA, Fernandez-Delgado R, Verdia-Baguena C, Queralt-Martin M, et al. Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. MBio. 2018. https://doi.org/10.1128/mBio.02325-17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hover S, Foster B, Barr JN, Mankouri J. Viral dependence on cellular ion channels—an emerging anti-viral target? J Gen Virol. 2017;98:345–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Acharya R, Carnevale V, Fiorin G, Levine BG, Polishchuk AL, Balannik V, Samish I, Lamb RA, Pinto LH, DeGrado WF, Klein ML. Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus. Proc Natl Acad Sci U S A. 2010;107:15075–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ichinohe T, Pang IK, Iwasaki A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol. 2010;11:404–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto LH, Holsinger LJ, Lamb RA. Influenza virus M2 protein has ion channel activity. Cell. 1992;69:517–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clarke D, Griffin S, Beales L, Gelais CS, Burgess S, Harris M, Rowlands D. Evidence for the formation of a heptameric ion channel complex by the hepatitis C virus p7 protein in vitro. J Biol Chem. 2006;281:37057–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breitinger U, Farag NS, Ali NK, Breitinger HG. Patch-clamp study of hepatitis C p7 channels reveals genotype-specific sensitivity to inhibitors. Biophys J. 2016;110:2419–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ewart GD, Sutherland T, Gage PW, Cox GB. The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J Virol. 1996;70:7108–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol. 2015;96:2000–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arbely E, Khattari Z, Brotons G, Akkawi M, Salditt T, Arkin IT. A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein. J Mol Biol. 2004;341:769–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pervushin K, Tan E, Parthasarathy K, Lin X, Jiang FL, Yu D, Vararattanavech A, Soong TW, Liu DX, Torres J. Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLoS Pathog. 2009;5:e1000511.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nieto-Torres JL, Dediego ML, Alvarez E, Jimenez-Guardeno JM, Regla-Nava JA, Llorente M, Kremer L, Shuo S, Enjuanes L. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology. 2011;415:69–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torres J, Parthasarathy K, Lin X, Saravanan R, Kukol A, Liu DX. Model of a putative pore: the pentameric alpha-helical bundle of SARS coronavirus E protein in lipid bilayers. Biophys J. 2006;91:938–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson L, McKinlay C, Gage P, Ewart G. SARS coronavirus E protein forms cation-selective ion channels. Virology. 2004;330:322–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fett C, DeDiego ML, Regla-Nava JA, Enjuanes L, Perlman S. Complete protection against severe acute respiratory syndrome coronavirus-mediated lethal respiratory disease in aged mice by immunization with a mouse-adapted virus lacking E protein. J Virol. 2013;87:6551–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruch TR, Machamer CE. The coronavirus E protein: assembly and beyond. Viruses. 2012;4:363–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres J, Maheswari U, Parthasarathy K, Ng L, Liu DX, Gong X. Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci. 2007;16:2065–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breitinger U, Farag NS, Ali NKM, Ahmed M, El-Azizi M, Breitinger HG: Cell viability assay as a tool to study activity and inhibition of hepatitis C p7 channels. J Gen Virol 2021, in revision.

  • Wilson L, Gage P, Ewart G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology. 2006;353:294–306.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pavlovic D, Fischer W, Hussey M, Durantel D, Durantel S, Branza-Nichita N, Woodhouse S, Dwek RA, Zitzmann N. Long alkylchain iminosugars block the HCV p7 ion channel. Adv Exp Med Biol. 2005;564:3–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breitinger U, Ali NK, Sticht H, Breitinger HG. Inhibition of SARS CoV envelope protein by flavonoids and classical viroporin inhibitors. Front Microbiol. 2021;12:692423.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crump A, Omura S. Ivermectin, “wonder drug” from Japan: the human use perspective. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87:13–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynagh T, Lynch JW. Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin. Front Mol Neurosci. 2012;5:60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cobos-Campos R, Apinaniz A, Parraza N, Cordero J, Garcia S, Orruno E. Potential use of ivermectin for the treatment and prophylaxis of SARS-CoV-2 infection. Curr Res Transl Med. 2021;69:103309.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azeem S, Ashraf M, Rasheed MA, Anjum AA, Hameed R. Evaluation of cytotoxicity and antiviral activity of ivermectin against Newcastle disease virus. Pak J Pharm Sci. 2015;28:597–602.

    CAS 
    PubMed 

    Google Scholar
     

  • Babalola OE, Bode CO, Ajayi AA, Alakaloko FM, Akase IE, Otrofanowei E, Salu OB, Adeyemo WL, Ademuyiwa AO, Omilabu S. Ivermectin shows clinical benefits in mild to moderate COVID19: a randomised controlled double-blind, dose-response study in Lagos. QJM. 2021;91:157.


    Google Scholar
     

  • Kinobe RT, Owens L. A systematic review of experimental evidence for antiviral effects of ivermectin and an in silico analysis of ivermectin’s possible mode of action against SARS-CoV-2. Fundam Clin Pharmacol. 2021;35:260–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zein A, Sulistiyana CS, Raffaelo WM, Pranata R. Ivermectin and mortality in patients with COVID-19: a systematic review, meta-analysis, and meta-regression of randomized controlled trials. Diabetes Metab Syndr. 2021;15:102186.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fam MS, Sedky CA, Turky NO, Breitinger HG, Breitinger U. Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites. Sci Rep. 2023;13:5328.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffin SD, Stgelais C, Owsianka AM, Patel AH, Rowlands DJ, Harris M. Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel. Hepatology. 2008;48:1779–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laing R, Gillan V, Devaney E. Ivermectin—old drug, new tricks? Trends Parasitol. 2017;33:463–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breitinger U, Breitinger HG. Modulators of the inhibitory glycine receptor. ACS Chem Neurosci. 2020;11:1706–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lynagh T, Lynch JW. Ivermectin binding sites in human and invertebrate Cys-loop receptors. Trends Pharmacol Sci. 2012;33:432–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krusek J, Zemkova H. Effect of ivermectin on gamma-aminobutyric acid-induced chloride currents in mouse hippocampal embryonic neurones. Eur J Pharmacol. 1994;259:121–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krause RM, Buisson B, Bertrand S, Corringer PJ, Galzi JL, Changeux JP, Bertrand D. Ivermectin: a positive allosteric effector of the alpha7 neuronal nicotinic acetylcholine receptor. Mol Pharmacol. 1998;53:283–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCavera S, Rogers AT, Yates DM, Woods DJ, Wolstenholme AJ. An ivermectin-sensitive glutamate-gated chloride channel from the parasitic nematode Haemonchus contortus. Mol Pharmacol. 2009;75:1347–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulze T, Hartl A, Höler S, Hemming C, Lehn R, Tandl D, Greiner T, Bertl A, Shepard K, Moroni A, Rauh O. SARS-CoV-2 envelope-protein corruption of homeostatic signaling mechanisms in mammalian cells. bioRxiv 2021.

  • Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parvez MSA, Karim MA, Hasan M, Jaman J, Karim Z, Tahsin T, Hasan MN, Hosen MJ. Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach. Int J Biol Macromol. 2020;163:1787–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang SNY, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA, Jans DA. The broad spectrum antiviral ivermectin targets the host nuclear transport importin alpha/beta1 heterodimer. Antiviral Res. 2020;177:104760.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turkia M. The history of methylprednisolone, ascorbic acid, thiamine, and heparin protocol and I-MASK+ ivermectin protocol for COVID-19. Cureus. 2020;12:e12403.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behera P, Patro BK, Padhy BM, Mohapatra PR, Bal SK, Chandanshive PD, Mohanty RR, Ravikumar SR, Singh A, Singh SR, et al. Prophylactic role of ivermectin in severe acute respiratory syndrome coronavirus 2 infection among healthcare workers. Cureus. 2021;13:e16897.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morgenstern J, Redondo JN, Olavarria A, Rondon I, Roca S, De Leon A, Canela J, Tavares J, Minaya M, Lopez O, et al. Ivermectin as a SARS-CoV-2 pre-exposure prophylaxis method in healthcare workers: a propensity score-matched retrospective cohort study. Cureus. 2021;13:e17455.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaccour C, Casellas A, Blanco-Di Matteo A, Pineda I, Fernandez-Montero A, Ruiz-Castillo P, Richardson MA, Rodriguez-Mateos M, Jordan-Iborra C, Brew J, et al. The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: a pilot, double-blind, placebo-controlled, randomized clinical trial. EClinicalMedicine. 2021;32:100720.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galan LEB, Santos NMD, Asato MS, Araujo JV, de Lima MA, Araujo AMM, Paiva ADP, Portella DGS, Marques FSS, Silva GMA, et al. Phase 2 randomized study on chloroquine, hydroxychloroquine or ivermectin in hospitalized patients with severe manifestations of SARS-CoV-2 infection. Pathog Glob Health. 2021;115:235–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okumus N, Demirturk N, Cetinkaya RA, Guner R, Avci IY, Orhan S, Konya P, Saylan B, Karalezli A, Yamanel L, et al. Evaluation of the effectiveness and safety of adding ivermectin to treatment in severe COVID-19 patients. BMC Infect Dis. 2021;21:411.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du J, Lu W, Wu S, Cheng Y, Gouaux E. Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature. 2015;526:224–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surya W, Li Y, Torres J. Structural model of the SARS coronavirus E channel in LMPG micelles. Biochim Biophys Acta Biomembr. 2018;1860:1309–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Reply