Development of a reverse transcription recombinase polymerase amplification combined with lateral flow assay for equipment-free on-site field detection of tomato chlorotic spot virus

image
  • Gilbertson RL, Batuman O, Webster CG, Adkins S. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu Rev Virol. 2015;2(1):67–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Webster CG, Frantz G, Reitz SR, Funderburk JE, Mellinger HC, McAvoy E, Turechek WW, Marshall SH, Tantiwanich Y, McGrath M, Daughtrey ML, Adkins S. Emergence of Groundnut ringspot virus and Tomato chlorotic spot virus in vegetables in Florida and the southeastern United States. Phytopathology. 2015;105:3, 388–39

  • Feldhoff A, Kikkert M, Kormelink R, Krczal G, Goldbach R, Peters D. Serological comparison of tospoviruses with polyclonal antibodies produced against the main structural proteins of tomato spotted wilt virus. Adv Virol. 1997;142(4):781–93.

    CAS 

    Google Scholar
     

  • De Borbón CM, Gracia O, Piccolo R. Relationships between tospovirus incidence and thrips populations on tomato in Mendoza, Argentina. J Phytopathol. 2006;154:93–9.

    Article 

    Google Scholar
     

  • De Avila A, De Haan P, Kormelink R, Resende RDO, Goldbach RW, Peters D. Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J Gen Virol. 1993;74(2):153–9.

    Article 
    PubMed 

    Google Scholar
     

  • Gracia O, De Borbón CM, De Millan NG, Cuesta GV. Occurrence of different tospoviruses in vegetable crops in Argentina. J Phytopathol. 1999;147(4):223–7.

    Article 

    Google Scholar
     

  • Londoño A, Capobianco H, Zhang S, Polston JE. First record of Tomato chlorotic spot virus in the USA. Trop Plant Pathol. 2012;37(5):333–8.

    Article 

    Google Scholar
     

  • Zhang S, Seal DR, Wang Q, McAvoy E, Polston JE. An outbreak of tomato chlorotic spot virus, an emerging tospovirus threatening tomato production in the United States. Phytopathology. 2015;105:4, S4.156.

  • Webster CG, Perry KL, Lu X, Horsman L, Frantz G, Mellinger C, Adkins S. First report of Groundnut ringspot virus infecting tomato in south Florida. Plant Health Progress. 2010;11(1):49.

    Article 

    Google Scholar
     

  • Batuman O, Rojas MR, Almanzar A, Gilbertson RL. First report of Tomato chlorotic spot virus in processing tomatoes in the Dominican Republic. Plant Dis. 2014;98(2):286–286.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baysal-Gurel F, Li R, Ling KS, Miller SA. First report of Tomato chlorotic spot virus infecting tomatoes in Ohio. Plant Dis. 2015;99(1):163–163.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez ZY, Chang SL, González AH, Barboza VNM, González AG. First molecular evidence of Tomato chlorotic spot virus infecting tomatoes in Cuba. Plant Dis. 2016;100(9):1956–1956.

    Article 

    Google Scholar
     

  • Sui X, McGrath MT, Zhang S, Wu Z, Ling KS. First report of tomato chlorotic spot virus infecting tomato in New York. Plant Dis. 2018;102(2):460–460.

    Article 

    Google Scholar
     

  • Webster CG, de Jensen CE, Rivera-Vargas LI. Rodrigues JCV, Mercado W, Frantz G, Mellinger C, Adkins S. First report of Tomato chlorotic spot virus (TCSV) in tomato, pepper, and jimsonweed in Puerto Rico. Plant Health Progress. 2013;14:1, 47.

  • Batuman O, Turini TA, LeStrange M, Stoddard S, Miyao G, Aegerter BJ, Chen L-F, McRoberts N, Ullman DE, Gilbertson RL. Development of an IPM Strategy for Thrips and Tomato spotted wilt virus in Processing Tomatoes in the Central Valley of California. Pathogens. 2020;9:8, 636.

  • Cho JJ, Mau R, German TL, Martmann R, Yudin LS. A multidisciplinary approach to management of tomato spotted wilt virus in Hawaii. Plant Dis. 1989;73(5):375–83.

    Article 

    Google Scholar
     

  • Riley DG, Pappu HR. Tactics for management of thrips (Thysanoptera: Thripidae) and tomato spotted wilt virus in tomato. J Econ Entomol. 2004;97(5):1648–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sui X, Zhang S, Wu Z, Ling KS. Reverse transcription loop-mediated isothermal amplification for species-specific detection of tomato chlorotic spot orthotospovirus. J Virol Methods. 2018;253:56–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yilmaz S, Adkins S, Batuman O. Field-portable, rapid, and low-cost RT-LAMP assay for the detection of tomato chlorotic spot Virus. Phytopathology®, 2023; 113:3, 567–76.

  • Babu B, Ochoa-Corona FM, Paret ML. Recombinase polymerase amplification applied to plant virus detection and potential implications. Anal Biochem. 2018;546:72–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strayer-Scherer A, Jones JB, Paret ML. “Recombinase polymerase amplification assay for field detection of tomato bacterial spot pathogens. Phytopathology. 2015;109(4):690–700.

    Article 

    Google Scholar
     

  • Lee HJ, Cho IS, Ju HJ, Jeong RD. Rapid and visual detection of tomato spotted wilt virus using recombinase polymerase amplification combined with lateral flow strips. Mol Cell Probes. 2021;57:101727.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Zheng HY, Jiang DM, Liu M, Zhang W, Yan JY. A rapid detection of tomato yellow leaf curl virus using recombinase polymerase amplification-lateral flow dipstick assay. Lett Appl Microbiol. 2022;74(5):640–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lillis L, Siverson J, Lee A, Cantera J, Parker M, Piepenburg O, Lehman DA, Boyle DS. Factors influencing Recombinase polymerase amplification (RPA) assay outcomes at point of care. Mol Cell Probes. 2016;30(2):74–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lobato IM, O’Sullivan CK. Recombinase polymerase amplification: Basics, applications and recent advances. TrAC Trends Anal Chem. 2018;98:19–35.

    Article 
    CAS 

    Google Scholar
     

  • Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol. 2016;4(7):e204.

    Article 

    Google Scholar
     

  • Silva G, Bömer M, Nkere C, Kumar PL, Seal SE. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification. J Virol Methods. 2015;222:138–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Zhang L, Yu Y, Ai T, Zhang Y, Su J. Rapid detection of Edwardsiella ictaluri in yellow catfish (Pelteobagrus fulvidraco) by real-time RPA and RPA-LFD. Aquaculture. 2022;552:737976.

    Article 
    CAS 

    Google Scholar
     

  • Yang Y, Qin X, Zhang W, Li Y, Zhang Z. Rapid and specific detection of porcine parvovirus by isothermal recombinase polymerase amplification assays. Mol Cell Probes. 2016;30(5):300–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison L, Brame KL, Geltz LE, Landry AM. Closely opposed apurinic/apyrimidinic sites are converted to double strand breaks in Escherichia coli even in the absence of exonuclease III, endonuclease IV, nucleotide excision repair and AP lyase cleavage. DNA Repair. 2006;5(3):324–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou P, Wang H, Zhao G, He C, He H. Rapid detection of infectious bovine Rhinotracheitis virus using recombinase polymerase amplification assays. BMC Vet Res. 2017;13(1):1–9.

    Article 

    Google Scholar
     

  • Mandal B, Csinos AS, Martinez-Ochoa N, Pappu HR. A rapid and efficient inoculation method for Tomato spotted wilt tospovirus. J Virol Methods. 2008;149(1):195–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mason MG, Botella JR. Rapid (30-second), equipment-free purification of nucleic acids using easy-to-make dipsticks. Nat Protoc. 2020;15(11):3663–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badillo-Vargas IE, Baker CA, Turechek WW, Frantz G, Mellinger HC, Funderburk JE, Adkins S. Genomic and biological characterization of tomato necrotic streak virus, a novel subgroup 2 ilarvirus infecting tomato in Florida. Plant Disease. 2016;100:6, 1046–53.

  • Jacobi V, Bachand GD, Hamelin RC, Castello JD. Development of a multiplex immunocapture RT-PCR assay for detection and differentiation of tomato and tobacco mosaic tobamoviruses. J Virol Methods. 1998;74(2):167–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jain RK, Pappu SS, Pappu HR, Culbreath AK, Todd JW. Molecular diagnosis of tomato spotted wilt tospovirus infection of peanut and other field and greenhouse crops. Plant Dis. 1998;82(8):900–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ling KS, Tian T, Gurung S, Salati R, Gilliard A. First report of tomato brown rugose fruit virus infecting greenhouse tomato in the United States. Plant Dis. 2019;103(6):1439.

    Article 

    Google Scholar
     

  • Mansilla C, Sánchez F, Ponz F. The diagnosis of the tomato variant of pepino mosaic virus: an IC-RT-PCR approach. Eur J Plant Pathol. 2003;109(2):139–46.

    Article 
    CAS 

    Google Scholar
     

  • Wyatt SD, Brown JK. Detection of subgroup III geminivirus isolates in leaf extracts by degenerate primers and polymerase chain reaction. Phytopathology. 1996;86(12):1288–93.

    Article 

    Google Scholar
     

  • Xi D, Lan L, Wang J, Xu W, Xiang B, Lin H. Variation analysis of two cucumber mosaic viruses and their associated satellite RNAs from sugar beet in China. Virus Genes. 2016;33(3):293–8.


    Google Scholar
     

  • Londoño MA, Harmon CL, Polston JE. Evaluation of recombinase polymerase amplification for detection of begomoviruses by plant diagnostic clinics. Virol J. 2016;13(1):1–9.

    Article 

    Google Scholar
     

  • Lu Y, Yao B, Wang G, Hong N. The detection of ACLSV and ASPV in pear plants by RT-LAMP assays. J Virol Methods. 2018;252:80–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao L, Feng CH, Li BQ, Hao XA, Liu H, Wu YF, Wang QC. Rapid detection of apple stem grooving virus by reverse transcription loop-mediated isothermal amplification. J Plant Pathol. 2014;96(2):407–9.

    Article 

    Google Scholar
     

  • Dai T, Yang X, Hu T, Jiao B, Xu Y, Zheng X, Shen D. Comparative evaluation of a novel recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) assay, LAMP, conventional PCR, and leaf-disc baiting methods for detection of Phytophthora sojae. Front Microbiol. 2019;10:1884.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammond RW, Zhang S. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification. J Virol Methods. 2016;236:62–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao Y, Yan D, Wu X, Chen Z, Lai Y, Lv L, Fei Y, Chen J, Zheng H, Song X. Rapid and visual detection of milk vetch dwarf virus using recombinase polymerase amplification combined with lateral flow strips. Virol J. 2020;17(1):1–8.

    Article 
    CAS 

    Google Scholar
     

  • Kiatpathomchai W, Jaroenram W, Arunrut N, Jitrapakdee S, Flegel TW. Shrimp Taura syndrome virus detection by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick. J Virol Methods. 2008;153(2):214–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Sun M, Xu D, Podok P, Xie J, Jiang Y, Lu L. Rapid visual detection of cyprinid herpesvirus 2 by recombinase polymerase amplification combined with a lateral flow dipstick. J Fish Dis. 2018;41(8):1201–6.

    Article 

    Google Scholar
     

  • Bonney LC, Watson RJ, Afrough B, Mullojonova M, Dzhuraeva V, Tishkova F, Hewson R. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection. PLoS Negl Trop Dis. 2017;11(10):e0006013.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miles, TD, Martin FN, Coffey MD. Development of rapid isothermal amplification assays for detection of Phytophthora spp. in plant tissue. Phytopathology. 2015;105:2, 265–78.

  • Cui L, Ge Y, Qi X, Xu G, Li H, Zhao K, Wu B, Shi Z, Guo X, Hu L, You Q, Zhang LH, Freiberg AN, Yu X, Wang H, Zhou M, Tang YW. Detection of severe fever with thrombocytopenia syndrome virus by reverse transcription–cross-priming amplification coupled with vertical flow visualization. J Clin Microbiol. 2012;50(12):3881–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge Y, Wu B, Qi X, Zhao K, Guo X, Zhu Y, Qi Y, Shi Z, Zhou M, Wang H, Cui L. Rapid and sensitive detection of novel avian-origin influenza A (H7N9) virus by reverse transcription loop-mediated isothermal amplification combined with a lateral-flow device. PLoS ONE. 2013;8(8):e69941.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xi Y, Xu CZ, Xie ZZ, Zhu DL, Dong JM. Rapid and visual detection of dengue virus using recombinase polymerase amplification method combined with lateral flow dipstick. Mol Cell Probes. 2019;46:101413.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adkins S, Webster CG, Mellinger HC, Frantz G, Turechek WW, McAvoy E, Funderburk JE. Detection and characterization of tomato viruses: a case study of emerging tospoviruses in Florida. In IV International Symposium on Tomato Diseases 2013;1069, 83–85. Available from. https://www.actahort.org/members/showpdf?session=1861926.

  • Published
    Categorized as Virology

    Leave a Reply