Comparative phylogenetic analysis and transcriptomic profiling of Dengue (DENV-3 genotype I) outbreak in 2021 in Bangladesh

image
  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al. The global distribution and burden of dengue. Nature [Internet]. Nature Publishing Group; 2013;496:504–7. Available from: https://doi.org/10.1038/nature12060

  • Mahbubur Rahman KR, Siddque AK, Shereen Shoma AHMK, Ali KS. Ananda Nisaluk and RFB. First Outbreak of. Emerg Infect Dis. 2002;8:2000–2.


    Google Scholar
     

  • Aziz MM, Hasan KN, Hasanat MA, Siddiqui MA, Salimullah M, Chowdhury AK, et al. Predominance of the DEN-3 genotype during the recent dengue outbreak in Bangladesh. Southeast Asian J Trop Med Public Health. 2002;33:42–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Muraduzzaman AKM, Alam AN, Sultana S, Siddiqua M, Khan MH, Akram A et al. Circulating dengue virus serotypes in Bangladesh from 2013 to 2016. VirusDisease [Internet]. Springer India; 2018;29:303–7. Available from: https://doi.org/10.1007/s13337-018-0469-x

  • Suzuki K, Phadungsombat J, Nakayama EE, Saito A, Egawa A, Sato T et al. Genotype replacement of dengue virus type 3 and clade replacement of dengue virus type 2 genotype Cosmopolitan in Dhaka, Bangladesh in 2017.Infect Genet Evol. 2019;75.

  • Nikolayeva I, Bost P, Casademont I, Duong V, Koeth F, Prot M, et al. A blood RNA signature detecting severe disease in young dengue patients at hospital arrival. J Infect Dis. 2018;217:1690–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saini J, Bandyopadhyay B, Pandey AD, Ramachandran VG, Das S, Sood V et al. High-Throughput RNA Sequencing Analysis of Plasma Samples Reveals Circulating microRNA Signatures with Biomarker Potential in Dengue Disease Progression.mSystems. 2020;5.

  • Holmes EC, Twiddy SS. The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol. 2003;3:19–28.

    Article 
    PubMed 

    Google Scholar
     

  • Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the Flavivirus life cycle. Nat Rev Microbiol. 2005;3:13–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nunes PCG, Sampaio SAF, Rodrigues da Costa N, de Mendonça MCL, Lima M da, Araujo RQ et al. SEM,. Dengue severity associated with age and a new lineage of dengue virus-type 2 during an outbreak in Rio De Janeiro, Brazil. J Med Virol [Internet]. 2016;88:1130–6. Available from: https://onlinelibrary.wiley.com/doi/https://doi.org/10.1002/jmv.24464

  • Bournazos S, Gupta A, Ravetch JV. The role of IgG Fc receptors in antibody-dependent enhancement. Nat Rev Immunol [Internet]. Springer US; 2020;20:633–43. Available from: https://doi.org/10.1038/s41577-020-00410-0

  • Chareonsirisuthigul T, Kalayanarooj S, Ubol S. Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J Gen Virol. 2007;88:365–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng SQ, Yang X, Wei Y, Chen JT, Wang XJ, Peng HJ. A review on dengue vaccine development. Vaccines. 2020;8:1–13.

    Article 

    Google Scholar
     

  • Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16:343–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li MJ, Lan CJ, Gao HT, Xing D, Gu ZY, Su D et al. Transcriptome analysis of Aedes aegypti Aag2 cells in response to dengue virus-2 infection. Parasites and Vectors [Internet]. BioMed Central; 2020;13:1–14. Available from: https://doi.org/10.1186/s13071-020-04294-w

  • Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449:819–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hur S, Double-Stranded RNA. Sensors and modulators in Innate Immunity. Annu Rev Immunol. 2019;37:349–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazear HM, Schoggins JW, Diamond MS. Shared and Distinct Functions of Type I and Type III Interferons. Immunity [Internet]. Elsevier Inc.; 2019;50:907–23. Available from: https://doi.org/10.1016/j.immuni.2019.03.025

  • Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL, et al. A long noncoding RNA mediates both activation and repression of immune response genes. Sci (80-). 2013;341:789–92.

    Article 
    CAS 

    Google Scholar
     

  • Souza-Neto JA, Sim S, Dimopoulos G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci U S A. 2009;106:17841–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muñoz-Jordán JL, Sánchez-Burgos GG, Laurent-Rolle M, García-Sastre A. Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A. 2003;100:14333–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews S. others. FastQC: a quality control tool for high throughput sequence data. 2010. https://www.Bioinformatics.Babraham.Ac.Uk/Projects/Fastqc/. 2010. p. http://www.bioinformatics.babraham.ac.uk/projects/

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinlan AR, Hall IM, BEDTools:. A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seemann T. Snippy-Rapid haploid variant calling and core SNP phylogeny. GitHub. 2015.

  • Vilsker M, Moosa Y, Nooij S, Fonseca V, Ghysens Y, Dumon K, et al. Genome detective: an automated system for virus identification from high-throughput sequencing data. Bioinformatics. 2019;35:871–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.

    Article 
    PubMed 

    Google Scholar
     

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deforche K. An alignment method for nucleic acid sequences against annotated genomes.bioRxiv. 2017;1–15.

  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Erickson K. The jukes-cantor model of molecular evolution. Primus. 2010;20:438–45.

    Article 

    Google Scholar
     

  • Kumar S, Stecher G, Peterson D, Tamura K. MEGA-CC: Computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics. 2012;28:2685–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drummond AJ, Rambaut A. BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:1–8.

    Article 

    Google Scholar
     

  • Ho SYW, Shapiro B. Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol Ecol Resour. 2011;11:423–34.

    Article 
    PubMed 

    Google Scholar
     

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67:901–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin DP, Murrell B, Golden M, Khoosal A, Muhire B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1:1–5.

    Article 

    Google Scholar
     

  • Posada D, Crandall KA. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A. 2001;98:13757–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin DP, Posada D, Crandall KA, Williamson C. A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses. 2005;21:98–102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boni MF, Posada D, Feldman MW. An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics. 2007;176:1035–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padidam M, Sawyer S, Fauquet CM. Possible emergence of new geminiviruses by frequent recombination. Virology. 1999;265:218–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith JM. Analyzing the mosaic structure of genes. J Mol Evol. 1992;34:126–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibbs MJ, Armstrong JS, Gibbs AJ. Sister-scanning: a Monte Carlo procedure for assessing signals in rebombinant sequences. Bioinformatics. 2000;16:573–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin DP, Varsani A, Roumagnac P, Botha G, Maslamoney S, Schwab T, et al. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 2021;7:5–7.

    Article 

    Google Scholar
     

  • Zeng Z, Shi J, Guo X, Mo L, Hu N, Sun J, et al. Full-length genome and molecular characterization of dengue virus serotype 2 isolated from an imported patient from Myanmar. Virol J Virology Journal. 2018;15:1–12.


    Google Scholar
     

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods [Internet]. Nature Publishing Group; 2017;14:417–9. Available from: https://doi.org/10.1038/nmeth.4197

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.

    Article 

    Google Scholar
     

  • Chu CP, Hokamp JA, Cianciolo RE, Dabney AR, Brinkmeyer-Langford C, Lees GE, et al. RNA-seq of serial kidney biopsies obtained during progression of chronic kidney disease from dogs with X-linked hereditary nephropathy. Sci Rep. 2017;7:1–14.

    Article 

    Google Scholar
     

  • Benjamini Y, Hochberg Y. Controlling the false Discovery rate: a practical and powerful Approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.


    Google Scholar
     

  • Wickham H. Ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3:180–5.

    Article 

    Google Scholar
     

  • Kolde R. Pretty Heatmaps. R Packag version 108 [Internet]. 2015;1–7. Available from: https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf

  • Mi H, Ebert D, Muruganujan A, Mills C, Albou LP, Mushayamaha T, et al. PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. Volume 49. Oxford University Press; 2021. pp. D394–403.

  • Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res. 2016;44:D336–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian H, Sun Z, Faria NR, Yang J, Cazelles B, Huang S, et al. Increasing airline travel may facilitate co-circulation of multiple dengue virus serotypes in Asia. PLoS Negl Trop Dis. 2017;11:1–15.

    Article 

    Google Scholar
     

  • Luz PM, Vanni T, Medlock J, Paltiel AD, Galvani AP. Dengue vector control strategies in an urban setting: An economic modelling assessment. Lancet [Internet]. Elsevier Ltd; 2011;377:1673–80. Available from: https://doi.org/10.1016/S0140-6736(11)60246-8

  • Roy SK, Bhattacharjee S. Dengue virus: epidemiology, biology, and disease aetiology. Can J Microbiol. 2021;67:687–702.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsheten T, Gray DJ, Clements ACA, Wangdi K. Epidemiology and challenges of dengue surveillance in the WHO South-East Asia Region. Trans R Soc Trop Med Hyg. 2021;115:583–99.

    Article 
    PubMed 

    Google Scholar
     

  • Ganeshkumar P, Murhekar MV, Poornima V, Saravanakumar V, Sukumaran K, Anandaselvasankar A, et al. Dengue infection in India: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2018;12:2–3.

    Article 

    Google Scholar
     

  • Gupta E, Ballani N. Current perspectives on the spread of dengue in India. Infect Drug Resist. 2014;7:337–42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwal A, Gupta S, Chincholkar T, Singh V, Umare IK, Ansari K et al. Co-circulation of dengue virus serotypes in Central India: Evidence of prolonged viremia in DENV-2. Infect Genet Evol [Internet]. Elsevier; 2019;70:72–9. Available from: https://doi.org/10.1016/j.meegid.2019.02.024

  • Hamel R, Surasombatpattana P, Wichit S, Dauvé A, Donato C, Pompon J, et al. Phylogenetic analysis revealed the co-circulation of four dengue virus serotypes in Southern Thailand. PLoS ONE. 2019;14:1–16.

    Article 

    Google Scholar
     

  • Ali S, Khan AW, Taylor-Robinson AW, Adnan M, Malik S, Gul S. The unprecedented magnitude of the 2017 dengue outbreak in Sri Lanka provides lessons for future mosquito-borne infection control and prevention. Infect Dis Heal [Internet]. Elsevier Ltd; 2018;23:114–20. Available from: https://doi.org/10.1016/j.idh.2018.02.004

  • Oo PM, Wai KT, Harries AD, Shewade HD, Oo T, Thi A, et al. The burden of dengue, source reduction measures, and serotype patterns in Myanmar, 2011 to 2015-R2. Trop Med Health Tropical Medicine and Health. 2017;45:1–11.


    Google Scholar
     

  • Kusmintarsih ES, Hayati RF, Turnip ON, Yohan B, Suryaningsih S, Pratiknyo H et al. Molecular characterization of dengue viruses isolated from patients in Central Java, Indonesia. J Infect Public Health [Internet]. King Saud Bin Abdulaziz University for Health Sciences; 2018;11:617–25. Available from: https://doi.org/10.1016/j.jiph.2017.09.019

  • Zangmo S, Darnal JB, Tsheten, Gyeltshen S, Thapa BT, Rodpradit P et al. Molecular epidemiology of dengue fever outbreaks in Bhutan, 2016–2017. PLoS Negl Trop Dis [Internet]. 2020;14:1–12. Available from: https://doi.org/10.1371/journal.pntd.0008165

  • Prajapati S, Napit R, Bastola A, Rauniyar R, Shrestha S, Lamsal M et al. Molecular phylogeny and distribution of dengue virus serotypes circulating in Nepal in 2017. PLoS One [Internet]. 2020;15:1–17. Available from: https://doi.org/10.1371/journal.pone.0234929

  • Podder G, Breiman RF, Azim T, Thu HM, Velathanthiri N, Mai LQ, et al. Origin of dengue type 3 viruses associated with the dengue outbreak in Dhaka, Bangladesh, in 2000 and 2001. Am J Trop Med Hyg. 2006;74:263–5.

    Article 
    PubMed 

    Google Scholar
     

  • Islam MA, Ahmed MU, Begum N, Chowdhury NA, Khan AH, Parquet M del. Molecular characterization and clinical evaluation of dengue outbreak in 2002 in Bangladesh. Jpn J Infect Dis. 2006;59:85–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Islam QT. Changing epidemiological and clinical pattern of dengue in bangladesh 2018. J Med. 2019;20:1–3.

    Article 

    Google Scholar
     

  • Titir SR, Paul SK, Ahmed S, Haque N, Nasreen SA, Hossain KS et al. Nationwide distribution of dengue virus type 3 (Denv-3) genotype i and emergence of denv-3 genotype iii during the 2019 outbreak in bangladesh.Trop Med Infect Dis. 2021;6.

  • Rico-Hesse R, Harrison LM, Salas RA, Tovar D, Nisalak A, Ramos C, et al. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology. 1997;230:244–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • an de Weg CAM, Bijl MA, Anfasa F, Zaaraoui-Boutahar F, Dewi BE, et al. Time since Onset of Disease and individual clinical markers associate with transcriptional changes in uncomplicated dengue. PLoS Negl Trop Dis. 2015;9:1–20.


    Google Scholar
     

  • Hoang LT, Lynn DJ, Henn M, Birren BW, Lennon NJ, Le PT, et al. The early whole-blood transcriptional signature of Dengue Virus and features Associated with progression to dengue shock syndrome in vietnamese children and young adults. J Virol. 2010;84:12982–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devignot S, Sapet C, Duong V, Bergon A, Rihet P, Ong S et al. Genome-wide expression profiling deciphers host responses altered during dengue shock syndrome and reveals the role of innate immunity in severe dengue.PLoS One. 2010;5.

  • Loke P, Hammond SN, Leung JM, Kim CC, Batra S, Rocha C et al. Gene expression patterns of dengue virus-infected children from nicaragua reveal a distinct signature of increased metabolism.PLoS Negl Trop Dis. 2010;4.

  • Banerjee A, Shukla S, Pandey AD, Goswami S, Bandyopadhyay B, Ramachandran V et al. RNA-Seq analysis of peripheral blood mononuclear cells reveals unique transcriptional signatures associated with disease progression in dengue patients. Transl Res [Internet]. Elsevier Inc.; 2017;186:62–78.e9. Available from: https://doi.org/10.1016/j.trsl.2017.06.007

  • Yu J, Peterson DR, Baran AM, Bhattacharya S, Wylie TN, Falsey AR, et al. Host gene expression in nose and blood for the diagnosis of viral respiratory infection. J Infect Dis. 2019;219:1151–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanley JP, Tu HA, Dragon JA, Dickson DM, del Rio-Guerra R, Tighe SW et al. Immunotranscriptomic profiling the acute and clearance phases of a human challenge dengue virus serotype 2 infection model. Nat Commun [Internet]. Springer US; 2021;12:1–14. Available from: https://doi.org/10.1038/s41467-021-22930-6

  • Published
    Categorized as Virology

    Leave a Reply