Comparative characterization of Crimean-Congo hemorrhagic fever virus cell culture systems with application to propagation and titration methods

image
  • Sweileh WM. Global research trends of World Health Organization’s top eight emerging pathogens. Global Health. 2017;13:9–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehand MS, Millett P, Al-Shorbaji F, Roth C, Kieny MP, Murgue B. World health organization methodology to prioritize emerging infectious diseases in need of research and development. Emerg Infect Dis. 2018;24:e171427.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res. 2013;100:159–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fels JM, Maurer DP, Herbert AS, Wirchnianski AS, Vergnolle O, Cross RW, Abelson DM, Moyer CL, Mishra AK, Aguilan JT, et al. Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell. 2021;184:3486-3501 e3421.

    Article 

    Google Scholar
     

  • Spengler JR, Bente DA, Bray M, Burt F, Hewson R, Korukluoglu G, Mirazimi A, Weber F, Papa A. Second International Conference on Crimean-Congo Hemorrhagic Fever. Antiviral Res. 2018;150:137–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spengler JR, Bergeron E, Spiropoulou CF. Crimean-Congo hemorrhagic fever and expansion from endemic regions. Curr Opin Virol. 2019;34:70–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abudurexiti A, Adkins S, Alioto D, Alkhovsky SV, Avsic-Zupanc T, Ballinger MJ, Bente DA, Beer M, Bergeron E, Blair CD, et al. Taxonomy of the order Bunyavirales: update 2019. Arch Virol. 2019;164:1949–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Bello A, Smith G, Kielich DMS, Strong JE, Pickering BS. Degenerate sequence-based CRISPR diagnostic for Crimean-Congo hemorrhagic fever virus. PLoS Negl Trop Dis. 2022;16:e0010285.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conger NG, Paolino KM, Osborn EC, Rusnak JM, Gunther S, Pool J, Rollin PE, Allan PF, Schmidt-Chanasit J, Rieger T, Kortepeter MG. Health care response to CCHF in US soldier and nosocomial transmission to health care providers, Germany, 2009. Emerg Infect Dis. 2015;21:23–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mild M, Simon M, Albert J, Mirazimi A. Towards an understanding of the migration of Crimean-Congo hemorrhagic fever virus. J Gen Virol. 2010;91:199–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grandi G, Chitimia-Dobler L, Choklikitumnuey P, Strube C, Springer A, Albihn A, Jaenson TGT, Omazic A. First records of adult Hyalomma marginatum and H. rufipes ticks (Acari: Ixodidae) in Sweden. Ticks Tick Borne Dis. 2020;11:101403.

    Article 
    PubMed 

    Google Scholar
     

  • Andersen LK, Davis MD. Climate change and the epidemiology of selected tick-borne and mosquito-borne diseases: update from the International Society of Dermatology Climate Change Task Force. Int J Dermatol. 2017;56:252–9.

    Article 
    PubMed 

    Google Scholar
     

  • Pavel STI, Yetiskin H, Kalkan A, Ozdarendeli A. Evaluation of the cell culture based and the mouse brain derived inactivated vaccines against Crimean-Congo hemorrhagic fever virus in transiently immune-suppressed (IS) mouse model. PLoS Negl Trop Dis. 2020;14:e0008834.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berber E, Canakoglu N, Tonbak S, Ozdarendeli A. Development of a protective inactivated vaccine against Crimean-Congo hemorrhagic fever infection. Heliyon. 2021;7:e08161.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai S, Wu Q, Wu X, Peng C, Liu J, Tang S, Zhang T, Deng F, Shen S. Differential cell line susceptibility to crimean-congo hemorrhagic fever virus. Front Cell Infect Microbiol. 2021;11:648077.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Appelberg S, John L, Pardi N, Vegvari A, Bereczky S, Ahlen G, Monteil V, Abdurahman S, Mikaeloff F, Beattie M, et al. Nucleoside-modified mRNA vaccines protect IFNAR(-/-) mice against crimean-congo hemorrhagic fever virus infection. J Virol. 2022;96:e0156821.

    Article 
    PubMed 

    Google Scholar
     

  • Golden JW, Zeng X, Cline CR, Smith JM, Daye SP, Carey BD, Blancett CD, Shoemaker CJ, Liu J, Fitzpatrick CJ, et al. The host inflammatory response contributes to disease severity in Crimean-Congo hemorrhagic fever virus infected mice. PLoS Pathog. 2022;18:e1010485.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua BL, Scholte FE, Ohlendorf V, Kopp A, Marklewitz M, Drosten C, Nichol ST, Spiropoulou C, Junglen S, Bergeron E. A single mutation in Crimean-Congo hemorrhagic fever virus discovered in ticks impairs infectivity in human cells. Elife. 2020;9:e50999.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra AK, Moyer CL, Abelson DM, Deer DJ, El Omari K, Duman R, Lobel L, Lutwama JJ, Dye JM, Wagner A, et al: Structure and characterization of crimean-congo hemorrhagic fever virus GP38. J Virol 2020, 94.

  • Smith DR, Shoemaker CJ, Zeng X, Garrison AR, Golden JW, Schellhase CW, Pratt W, Rossi F, Fitzpatrick CJ, Shamblin J, et al. Persistent Crimean-Congo hemorrhagic fever virus infection in the testes and within granulomas of non-human primates with latent tuberculosis. PLoS Pathog. 2019;15:e1008050.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golden JW, Shoemaker CJ, Lindquist ME, Zeng X, Daye SP, Williams JA, Liu J, Coffin KM, Olschner S, Flusin O, et al. GP38-targeting monoclonal antibodies protect adult mice against lethal Crimean-Congo hemorrhagic fever virus infection. Sci Adv. 2019;5:eaaw9535.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez SE, Cross RW, Fenton KA, Bente DA, Mire CE, Geisbert TW. Vesicular stomatitis virus-based vaccine protects mice against Crimean-Congo hemorrhagic fever. Sci Rep. 2019;9:7755.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cajimat MNB, Rodriguez SE, Schuster IUE, Swetnam DM, Ksiazek TG, Habela MA, Negredo AI, Estrada-Pena A, Barrett ADT, Bente DA. Genomic characterization of Crimean-Congo hemorrhagic fever virus in Hyalomma Tick from Spain, 2014. Vector Borne Zoonotic Dis. 2017;17:714–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spengler JR, Kelly Keating M, McElroy AK, Zivcec M, Coleman-McCray JD, Harmon JR, Bollweg BC, Goldsmith CS, Bergeron E, Keck JG, et al. Crimean-Congo hemorrhagic fever in humanized mice reveals glial cells as primary targets of neurological infection. J Infect Dis. 2017;216:1386–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinkula J, Devignot S, Akerstrom S, Karlberg H, Wattrang E, Bereczky S, Mousavi-Jazi M, Risinger C, Lindegren G, Vernersson C, et al: Immunization with DNA plasmids coding for Crimean-Congo hemorrhagic fever virus capsid and envelope proteins and/or virus-like particles induces protection and survival in challenged mice. J Virol 2017, 91.

  • Dowall SD, Graham VA, Rayner E, Hunter L, Watson R, Taylor I, Rule A, Carroll MW, Hewson R. Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses. PLoS ONE. 2016;11:e0156637.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferraris O, Moroso M, Pernet O, Emonet S, Ferrier Rembert A, Paranhos-Baccala G, Peyrefitte CN. Evaluation of Crimean-Congo hemorrhagic fever virus in vitro inhibition by chloroquine and chlorpromazine, two FDA approved molecules. Antiviral Res. 2015;118:75–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foldes K, Aligholipour Farzani T, Ergunay K, Ozkul A: Differential growth characteristics of Crimean-Congo Hemorrhagic fever virus in kidney cells of human and Bovine Origin. Viruses 2020, 12.

  • Aligholipour Farzani T, Foldes K, Hanifehnezhad A, Yener Ilce B, Bilge Dagalp S, Amirzadeh Khiabani N, Ergunay K, Alkan F, Karaoglu T, Bodur H, Ozkul A. Bovine Herpesvirus Type 4 (BoHV-4) Vector Delivering Nucleocapsid Protein of Crimean-Congo Hemorrhagic Fever Virus Induces Comparable Protective Immunity against Lethal Challenge in IFNalpha/beta/gammaR-/- Mice Models. Viruses. 2019;11:237.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hawman DW, Meade-White K, Leventhal S, Appelberg S, Ahlen G, Nikouyan N, Clancy C, Smith B, Hanley P, Lovaglio J, et al: Accelerated DNA vaccine regimen provides protection against Crimean-Congo hemorrhagic fever virus challenge in a macaque model. Mol Ther 2022.

  • Mears MC, Rodriguez SE, Schmitz KS, Padilla A, Biswas S, Cajimat MNB, Mire CE, Welch SR, Bergeron E, Alabi CA, et al. Design and evaluation of neutralizing and fusion inhibitory peptides to Crimean-Congo hemorrhagic fever virus. Antiviral Res. 2022;207:105401.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leventhal SS, Meade-White K, Rao D, Haddock E, Leung J, Scott D, Archer J, Randall S, Erasmus JH, Feldmann H, Hawman DW. Replicating RNA vaccination elicits an unexpected immune response that efficiently protects mice against lethal Crimean-Congo hemorrhagic fever virus challenge. EBioMedicine. 2022;82:104188.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neogi U, Elaldi N, Appelberg S, Ambikan A, Kennedy E, Dowall S, Bagci BK, Gupta S, Rodriguez JE, Svensson-Akusjarvi S, et al: Multi-omics insights into host-viral response and pathogenesis in Crimean-Congo hemorrhagic fever viruses for novel therapeutic target. Elife 2022, 11.

  • Salvati MV, Salaris C, Monteil V, Del Vecchio C, Palu G, Parolin C, Calistri A, Bell-Sakyi L, Mirazimi A, Salata C. Virus-derived DNA forms mediate the persistent infection of tick cells by Hazara virus and Crimean-Congo Hemorrhagic fever virus. J Virol. 2021;95:e0163821.

    Article 
    PubMed 

    Google Scholar
     

  • Hawman DW, Meade-White K, Leventhal S, Feldmann F, Okumura A, Smith B, Scott D, Feldmann H. Immunocompetent mouse model for Crimean-Congo hemorrhagic fever virus. Elife. 2021;10:e63906.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hawman DW, Ahlen G, Appelberg KS, Meade-White K, Hanley PW, Scott D, Monteil V, Devignot S, Okumura A, Weber F, et al. A DNA-based vaccine protects against Crimean-Congo haemorrhagic fever virus disease in a Cynomolgus macaque model. Nat Microbiol. 2021;6:187–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cross RW, Prasad AN, Borisevich V, Geisbert JB, Agans KN, Deer DJ, Fenton KA, Geisbert TW. Crimean-Congo hemorrhagic fever virus strains Hoti and Afghanistan cause viremia and mild clinical disease in cynomolgus monkeys. PLoS Negl Trop Dis. 2020;14:e0008637.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez SE, McAuley AJ, Gargili A, Bente DA. Interactions of human dermal dendritic cells and langerhans cells treated with Hyalomma tick Saliva with Crimean-Congo Hemorrhagic fever virus. Viruses. 2018;10:381.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welch SR, Scholte FEM, Flint M, Chatterjee P, Nichol ST, Bergeron E, Spiropoulou CF. Identification of 2’-deoxy-2’-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus. Antiviral Res. 2017;147:91–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zivcec M, Guerrero LIW, Albarino CG, Bergeron E, Nichol ST, Spiropoulou CF. Identification of broadly neutralizing monoclonal antibodies against Crimean-Congo hemorrhagic fever virus. Antiviral Res. 2017;146:112–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berber E, Canakoglu N, Yoruk MD, Tonbak S, Aktas M, Ertek M, Bolat Y, Kalkan A, Ozdarendeli A. Application of the pseudo-plaque assay for detection and titration of Crimean-Congo hemorrhagic fever virus. J Virol Methods. 2013;187:26–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lombe BP, Miyamoto H, Saito T, Yoshida R, Manzoor R, Kajihara M, Shimojima M, Fukushi S, Morikawa S, Yoshikawa T, et al. Purification of Crimean-Congo hemorrhagic fever virus nucleoprotein and its utility for serological diagnosis. Sci Rep. 2021;11:2324.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flick R, Flick K, Feldmann H, Elgh F. Reverse genetics for crimean-congo hemorrhagic fever virus. J Virol. 2003;77:5997–6006.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peyrefitte CN, Perret M, Garcia S, Rodrigues R, Bagnaud A, Lacote S, Crance JM, Vernet G, Garin D, Bouloy M, Paranhos-Baccala G. Differential activation profiles of Crimean-Congo hemorrhagic fever virus- and Dugbe virus-infected antigen-presenting cells. J Gen Virol. 2010;91:189–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigues R, Paranhos-Baccala G, Vernet G, Peyrefitte CN. Crimean-Congo hemorrhagic fever virus-infected hepatocytes induce ER-stress and apoptosis crosstalk. PLoS ONE. 2012;7:e29712.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connolly-Andersen AM, Moll G, Andersson C, Akerstrom S, Karlberg H, Douagi I, Mirazimi A. Crimean-Congo hemorrhagic fever virus activates endothelial cells. J Virol. 2011;85:7766–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canakoglu N, Berber E, Tonbak S, Ertek M, Sozdutmaz I, Aktas M, Kalkan A, Ozdarendeli A. Immunization of knock-out alpha/beta interferon receptor mice against high lethal dose of Crimean-Congo hemorrhagic fever virus with a cell culture based vaccine. PLoS Negl Trop Dis. 2015;9:e0003579.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monteil V, Salata C, Appelberg S, Mirazimi A. Hazara virus and Crimean-Congo Hemorrhagic Fever Virus show a different pattern of entry in fully-polarized Caco-2 cell line. PLoS Negl Trop Dis. 2020;14:e0008863.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zivcec M, Safronetz D, Scott DP, Robertson S, Feldmann H. Nucleocapsid protein-based vaccine provides protection in mice against lethal Crimean-Congo hemorrhagic fever virus challenge. PLoS Negl Trop Dis. 2018;12:e0006628.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranadheera C, Valcourt EJ, Warner BM, Poliquin G, Rosenke K, Frost K, Tierney K, Saturday G, Miao J, Westover JB, et al. Characterization of a novel STAT 2 knock-out hamster model of Crimean-Congo hemorrhagic fever virus pathogenesis. Sci Rep. 2020;10:12378.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haddock E, Feldmann F, Hawman DW, Zivcec M, Hanley PW, Saturday G, Scott DP, Thomas T, Korva M, Avsic-Zupanc T, et al. A cynomolgus macaque model for Crimean-Congo haemorrhagic fever. Nat Microbiol. 2018;3:556–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozak RA, Fraser RS, Biondi MJ, Majer A, Medina SJ, Griffin BD, Kobasa D, Stapleton PJ, Urfano C, Babuadze G, et al. Dual RNA-Seq characterization of host and pathogen gene expression in liver cells infected with Crimean-Congo Hemorrhagic Fever Virus. PLoS Negl Trop Dis. 2020;14:e0008105.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bente DA, Alimonti JB, Shieh WJ, Camus G, Stroher U, Zaki S, Jones SM. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virus in a STAT-1 knockout mouse model. J Virol. 2010;84:11089–100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koehler JW, Delp KL, Hall AT, Olschner SP, Kearney BJ, Garrison AR, Altamura LA, Rossi CA, Minogue TD. Sequence optimized real-time reverse transcription polymerase chain reaction assay for detection of Crimean-Congo hemorrhagic fever virus. Am J Trop Med Hyg. 2018;98:211–5.

    Article 
    PubMed 

    Google Scholar
     

  • Li H, Hai Y, Lim SY, Toledo N, Crecente-Campo J, Schalk D, Li L, Omange RW, Dacoba TG, Liu LR, et al. Mucosal antibody responses to vaccines targeting SIV protease cleavage sites or full-length Gag and Env proteins in Mauritian cynomolgus macaques. PLoS ONE. 2018;13:e0202997.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suschak JJ, Golden JW, Fitzpatrick CJ, Shoemaker CJ, Badger CV, Schmaljohn CS, Garrison AR. A CCHFV DNA vaccine protects against heterologous challenge and establishes GP38 as immunorelevant in mice. NPJ Vac. 2021;6:31.

    Article 
    CAS 

    Google Scholar
     

  • Welch SR, Scholte FEM, Spengler JR, Ritter JM, Coleman-McCray JD, Harmon JR, Nichol ST, Zaki SR, Spiropoulou CF, Bergeron E. The Crimean-Congo hemorrhagic fever virus NSm protein is dispensable for growth in vitro and disease in Ifnar(-/-) mice. Microorganisms. 2020;8:775.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welch SR, Ritter JM, McElroy AK, Harmon JR, Coleman-McCray JD, Scholte FEM, Kobinger GP, Bergeron E, Zaki SR, Nichol ST, et al. Fluorescent Crimean-Congo hemorrhagic fever virus illuminates tissue tropism patterns and identifies early mononuclear phagocytic cell targets in Ifnar-/- mice. PLoS Pathog. 2019;15:e1008183.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spengler JR, Patel JR, Chakrabarti AK, Zivcec M, Garcia-Sastre A, Spiropoulou CF, Bergeron E. RIG-I mediates an antiviral response to Crimean-Congo hemorrhagic fever virus. J Virol. 2015;89:10219–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 1982;42:3858–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Buchholz UJ, Finke S, Conzelmann KK. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol. 1999;73:251–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pickering BS, Smith G, Pinette MM, Embury-Hyatt C, Moffat E, Marszal P, Lewis CE. Susceptibility of domestic swine to experimental infection with severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2021;27:104–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Nykoluk M, Li L, Liu LR, Omange RW, Soule G, Schroeder LT, Toledo N, Kashem MA, Correia-Pinto JF, et al. Natural and cross-inducible anti-SIV antibodies in Mauritian cynomolgus macaques. PLoS ONE. 2017;12:e0186079.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Omange RW, Liang B, Toledo N, Hai Y, Liu LR, Schalk D, Crecente-Campo J, Dacoba TG, Lambe AB, et al. Vaccine targeting SIVmac251 protease cleavage sites protects macaques against vaginal infection. J Clin Invest. 2020;130:6429–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scholte FEM, Zivcec M, Dzimianski JV, Deaton MK, Spengler JR, Welch SR, Nichol ST, Pegan SD, Spiropoulou CF, Bergeron E. Crimean-Congo hemorrhagic fever virus suppresses innate immune responses via a ubiquitin and ISG15 specific protease. Cell Rep. 2017;20:2396–407.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paragas J, Whitehouse CA, Endy TP, Bray M. A simple assay for determining antiviral activity against Crimean-Congo hemorrhagic fever virus. Antiviral Res. 2004;62:21–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergeron E, Zivcec M, Chakrabarti AK, Nichol ST, Albarino CG, Spiropoulou CF. Recovery of recombinant crimean Congo Hemorrhagic fever virus reveals a function for non-structural glycoproteins cleavage by furin. PLoS Pathog. 2015;11:e1004879.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlberg H, Tan YJ, Mirazimi A. Induction of caspase activation and cleavage of the viral nucleocapsid protein in different cell types during Crimean-Congo hemorrhagic fever virus infection. J Biol Chem. 2011;286:3227–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • VERO C1008 [Vero 76, clone E6, Vero E6]. Available from: https://www.atcc.org/products/crl-1586 [Cited 2022 September 24]. American Type Culture Collection 2022.

  • Dulbecco R, Freeman G. Plaque production by the polyoma virus. Virology. 1959;8:396–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DMEM – Dulbecco’s Modified Eagle Medium. Available from: https://www.thermofisher.com/ca/en/home/life-science/cell-culture/mammalian-cell-culture/classical-media/dmem.html [Cited 2022 September 24]. ThermoFisher Scientific 2022.

  • Classical Media & Buffers. Available from: https://www.sigmaaldrich.com/CA/en/products/cell-culture-and-analysis/cell-culture-media-and-buffers/classical-media-and-buffers [Cited 2022-09-24]. Sigma-Aldrich 2022.

  • Wu XW, Wang RF, Yuan M, Xu W, Yang XW. Dulbecco’s modified eagle’s medium and minimum essential medium–which one is more preferred for establishment of Caco-2 cell monolayer model used in evaluation of drug absorption? Pharmazie. 2013;68:805–10.

    CAS 
    PubMed 

    Google Scholar
     

  • SW-13. Available from: https://www.atcc.org/products/ccl-105 [Cited 2022 September 24]. American Type Culture Collection 2022.

  • Leibovitz A, McCombs WM, 3rd, Johnston D, McCoy CE, Stinson JC: New human cancer cell culture lines. I. SW-13, small-cell carcinoma of the adrenal cortex. J Natl Cancer Inst 1973, 51:691–697.

  • Ammerman NC, Beier-Sexton M, Azad AF: Growth and maintenance of Vero cell lines. Curr Protoc Microbiol 2008, Appendix 4:Appendix 4E.

  • Nahapetian AT, Thomas JN, Thilly WG. Optimization of environment for high density Vero cell culture: effect of dissolved oxygen and nutrient supply on cell growth and changes in metabolites. J Cell Sci. 1986;81:65–103.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • JCRB9069 SW-13. Available from: https://cellbank.nibiohn.go.jp/~cellbank/en/search_res_det.cgi?ID=608 [Cited 2022 September 24]. Japanese Collection of Research Bioresources Cell Bank 2022.

  • Andersson I, Karlberg H, Mousavi-Jazi M, Martinez-Sobrido L, Weber F, Mirazimi A. Crimean-Congo hemorrhagic fever virus delays activation of the innate immune response. J Med Virol. 2008;80:1397–404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zivcec M, Safronetz D, Scott D, Robertson S, Ebihara H, Feldmann H. Lethal Crimean-Congo hemorrhagic fever virus infection in interferon alpha/beta receptor knockout mice is associated with high viral loads, proinflammatory responses, and coagulopathy. J Infect Dis. 2013;207:1909–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindquist ME, Zeng X, Altamura LA, Daye SP, Delp KL, Blancett C, Coffin KM, Koehler JW, Coyne S, Shoemaker CJ, et al. Exploring Crimean-Congo Hemorrhagic fever virus-induced hepatic injury using antibody-mediated Type I interferon blockade in mice. J Virol 2018, 92.

  • Mo Q, Feng K, Dai S, Wu Q, Zhang Z, Ali A, Deng F, Wang H, Ning YJ. Transcriptome profiling highlights regulated biological processes and type III interferon antiviral responses upon Crimean-Congo hemorrhagic fever virus infection. Virol Sin. 2023;38:34–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Embury-Hyatt C, Weingartl HM. Experimental inoculation study indicates swine as a potential host for Hendra virus. Vet Res. 2010;41:33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchez AJ, Vincent MJ, Nichol ST. Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J Virol. 2002;76:7263–75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li N, Rao G, Li Z, Yin J, Chong T, Tian K, Fu Y, Cao S. Cryo-EM structure of glycoprotein C from Crimean-Congo hemorrhagic fever virus. Virol Sin. 2022;37:127–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duh D, Nichol ST, Khristova ML, Saksida A, Hafner-Bratkovic I, Petrovec M, Dedushaj I, Ahmeti S, Avsic-Zupanc T. The complete genome sequence of a Crimean-Congo hemorrhagic fever virus isolated from an endemic region in Kosovo. Virol J. 2008;5:7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Published
    Categorized as Virology

    Leave a Reply